
 Bilkent University

Senior Design Project

Final Report

Project Name: BookClub

Group Members: Bikem Çamli

Mert Osman Dönmezyürek

Barış Eymür

Mahin Khankishizade

Deniz Şen

Supervisor: Assoc. Prof. Selim Aksoy

Jury Members: Prof. Dr. Fazlı Can

Assoc. Prof. Cigdem Gunduz Demir

Innovation Expert: Dr. Haluk Altunel

Final Report

May 9, 2019

This report is submitted to the Department of Computer Engineering of Bilkent University

in partial fulfillment of the requirements of the Senior Design Project course CS491/2

Table of Contents

Acronyms and Abbreviations 5

1. Introduction 5
1.1 Engineering and Report Writing Standards 6
1.2. Use of New Tools and Technologies 6
1.3. Lifelong Learning 7
1.4. Implementing Creative and Impactful Solutions 7

2. System Overview 8

3. BookClub’s Algorithmic and Application Design 10
3.1. Server Algorithms and Implementation 10

3.1.1. Match Algorithm 10
3.1.2. Suggestion Algorithm 11

3.2. User Experience and Interface Design 13

4. Final System Architecture Design 14
4.1. Subsystem Overview 14
4.2. Packages 17

4.2.1. Client Package 17
4.2.1.1 View 18

4.2.1.1.1 Layout 18
4.2.1.2 Controller 19
4.2.1.3 Model 19

4.2.2 Server Package 20
4.2.2.1 Model 21
4.2.2.2 Controller 21

4.2.2.2.1 ServiceManager 21
4.2.2.2.2 AlgorithmManager 21
4.2.2.2.3 ModelManager 22

4.3 Class Interfaces 22
4.3.1 Client 22

4.3.1.1 View 24
4.3.1.1.1 Layout Package 24

4.3.1.1.1.1 WelcomeActivity Class 25
4.3.1.1.1.2 LoginActivity Class 25
4.3.1.1.1.3 ForgotPasswordActivity Class 26
4.3.1.1.1.4 TradeBookActivity Class 26
4.3.1.1.1.5 SignUpActivity Class 26

1

4.3.1.1.1.6 MainActivity Class 27
4.3.1.1.1.7 ChatListActivity Class 28
4.3.1.1.1.8 ChatActivity Class 28
4.3.1.1.1.9 MatchListFragment Class 29
4.3.1.1.1.10 SuggestionListFragment Class 29
4.3.1.1.1.11 PreferencesActivity Class 29
4.3.1.1.1.12 HistoryActivity Class 30
4.3.1.1.1.13 RequestBookActivity Class 31
4.3.1.1.1.14 TradeListActivity Class 31
4.3.1.1.1.15 AccountSettingsActivity Class 32
4.3.1.1.1.16 WishlistActivity Class 33
4.3.1.1.1.17 GeneralListFragment Class 33
4.3.1.1.1.18 BookInfoActivity Class 34

4.3.1.2 Controller 34
4.3.1.2.1 BookClubAPI Class 34

4.3.1.3 Model 38
4.3.1.3.1 Book Class 38
4.3.1.3.2 User Class 39

4.3.2 Server 40
4.3.2.1 Controller 42

4.3.2.1.1 AlgorithmManager Package 42
4.3.2.1.1.1 AlgorithmController Class 42

4.3.2.1.2 ServiceManager Package 42
4.3.2.1.2.1 EmailServiceController Class 42
4.3.2.1.2.2 ChatServiceController Class 43

4.3.2.1.3 ModelManager Package 43
4.3.2.1.3.1 UserController Class 43
4.3.2.1.3.2 WishListController Class 44
4.3.2.1.3.3 HistoryController Class 45
4.3.2.1.3.4 TradeListController Class 45
4.3.2.1.3.5 AccountSettingsController Class 46
4.3.2.1.3.6 ChatController Class 47
4.3.2.1.3.7 MessageController Class 47

4.3.2.2 Model 47
4.3.2.2.1 User Class 47
4.3.2.2.2 WishList Class 48
4.3.2.2.3 History Class 49

2

4.3.2.2.4 TradeList Class 49
4.3.2.2.5 AccountSettings Class 50
4.3.2.2.6 Chat Class 50
4.3.2.2.7 Message Class 51
4.3.2.2.8 Book Class 51
4.3.2.2.9 Match Class 52
4.3.2.2.10 Suggestion Class 52

5. Impact of Engineering Solutions 53
5.1. Economical Impacts 53
5.2. Environmental Impacts 53
5.3. Social Impacts 54

6. Tools and Technologies Used 54
6.1. Development Tools 54

6.1.1 Pycharm 54
6.1.2. Visual Studio Code 54
6.1.3. GitHub 55
6.1.4. Postman 55
6.1.5. Xampp 55
6.1.6. phpMyAdmin 55
6.1.7. HeidiSQL 56
6.1.8. Trello 56
6.1.9. Android Studio 56
6.1.10. Genymotion Emulator 57

6.2. Libraries and Frameworks Resources 57
6.2.1 Square Picasso 57
6.2.2 Swipe to Dismiss Undo 57
6.2.3 Spots Dialog 57
6.2.4 LovelyDialog 58
6.2.5 Pandas 58
6.2.6 Factory-boy and Faker 58
6.2.7 Django 58
6.2.8 Django-cors-headers 58
6.2.9 djangorestframework 59
6.2.10 mysqlclient 59
6.2.11 Android SDK 28 59

7. Engineering Solutions and Contemporary Issues 59

3

7.1 Internet Related Issues 59
7.2 Issues Related to Huge Market Size 60
7.3 Language and Communication Issues 60
7.4 Data Privacy Issues 60
7.5 Security Issues 61

8.User Manual 62

8.1 Initial Main Page 62
8.2 Login Page for Normal Users 63
8.3 Forgot Password Page 64
8.4 Login or Register Proposal Page for Guests 65
8.5 Register Page 66
8.6 General Page For Users 67
8.7 General Page for Guests 68
8.8 Matches Page 69
8.9 Suggestions Page 70
8.10 Settings Page 71
8.11 Account Settings Page 72
8.12 Wishlist Page 73
8.13 Tradelist Page 74
8.14 History Page 75
8.15 Add New Book to Wishlist Page 76
8.16 Add New Book to Tradelist Page 77
8.17 My Chats Page 78
8.18 Single Chat’s PagePage 79
8.19 Rating a User Page 80
8.20 Other User’s Profile Page 81
8.21 Own Profile Page 82

References 83

4

Acronyms and Abbreviations

UML: Unified Modeling Language

API: Application Programming Interface

MVC: Model View Controller design pattern

JSON: JavaScript Object Notation

ORM: Object-relational mapping

1. Introduction

Reading is a fun and useful activity: we can learn new things by reading a scientific book

or we can find ourselves in a totally new fictional world by reading a novel. Unfortunately,

every beautiful thing comes with a price. Wouldn’t it be nice to exchange our books with

our friends’ books, instead of paying? If we did that, we would have lessened the price of

reading significantly. There are groups of people around the world who have noticed the

advantages of book sharing. These people have formed book sharing groups, called

book clubs.

The main aim of this project is to create a book trading platform which will serve as a

universal “BookClub”. The users of this mobile app will be able to exchange their used

books with books of other users. The users will specify the books that they desire to give

away and the ones they want to read. Using this information, BookClub will match users

with the owners of books they are looking for. While doing this, it will find the best

possible match for a user by considering user locations and user ratings Additionally, it

will make personal suggestions to its users.

This report starts with BookClub’s system overview. Then, the implementation details of

BookClub’s match and suggestion algorithms and the user interface design are given.

Following this, details of our system architecture are explained, using package diagrams

and class interfaces. The report continues with economical, environmental and social

impacts of BookClub. After this section, the development tools, frameworks and libraries

5

we used in implementation are given and the way we used them in the development

process are explained. Then, contemporary issues related with the BookClub’s project

domain is included. The report ends with the user manual for BookClub.

1.1 Engineering and Report Writing Standards

All the diagrams and figures that describe software or hardware compositions included in

the reports of BookClub follow the UML guidelines. We chose to use UML because all of

our group members were proficient in it, since it was taught in CS 319 (Object Oriented

Software Engineering) course.

The citations and references in all reports follows IEEE’s standards. These standards are

highly recommended for use in the engineering reports, thus we decided to use them.

1.2. Use of New Tools and Technologies

RestAPI: We implemented the API between client and server with the help of RestAPI.

All the requests were handled via this API. [1]

Django Python Framework: We used this framework in the server-side because it is

very easily adaptable to MVC pattern and easily controls the model side with its

controllers. Additionally, the overall structure of the Django Framework was well suited

for our project, since BookClub is a database driven mobile app.[2]

JSON Data: As our data type, we used JSON to communicate between client and

server. This kind of data comes very handy and works efficiently with RestAPI.

Django Python ORM: Since we used Django Python Framework, instead of directly

writing MySQL queries, we decided to use Django’s own ORM. This ORM came very

handy in creating queries because of its syntax. With this ORM the complex queries

were very easy to implement.

Postman: We used Postman to send requests to server functions and test them while

we were developing our API. We simulated the client side in Postman by sending

necessary requests to server functions and checking if the necessary operations are

performed successfully. [3]

6

AndroidAPI 28 Nougat: As BookClub is an Android application, we used Android SDK

to implement it and we used the newest one which is API 28.

Android Studio: Android Studio is the IDE that Google themselves recommend for the

development of Android applications. It is based on IntelliJ Idea which is full of useful

functions that aid the developer during the coding process.[4]

NetBeans: NetBeans IDE was used during the development of the client-server API. It

also contains many useful features for Java development.

OkHTTP3: OkHTTP3 is a modern library that makes http request handling easier and

more efficient. [5]

1.3. Lifelong Learning

The BookClub users will have an opportunity of getting original books easily and for free.

By using BookClub, they will be able to explore new books with BookClub’s innovative

suggestion algorithm and getting their desired books with the best match algorithm. The

best part of these transactions are - they are completely free. By this way, users of

BookClub will always be able to find books to read, which will give them the chance to

constantly reach new information.

The developers of BookClub, will constantly update the application by using the user

feedback. Additionally, they will try to adjust the application to the newest technologies

and environments.

1.4. Implementing Creative and Impactful Solutions

In implementation of BookClub we have mainly considered two things: the

communication between client and server team and the user experience. Both of these

values had to be at their best.

In order to improve the communication between two teams, we had some standards in

the implementation of the code. First of them was to write understandable and readable

code with the comments as headers. Additionally, when something was changed in the

7

API or server part, the client team was being notified via third party apps such as Trello,

Google Drive or WhatsApp group chats.

In order to improve the user experience within the app, we constantly were testing the

app with the people who has no idea what it is about. Their feedback was very useful in

enhancing the user experience and changing the interface of the application.

Additionally, we tried to find an external server, because the application was going to be

an Android application, achievable from all Android devices.

2. System Overview

Let’s imagine a case where a user wants to read/buy a book, however, the book is either

too expensive, not available in the local markets or worse - the book is only obtainable

as a pirate version. In this situation, let’s think about what are the primary

websites/applications the user will use to obtain the original version of the book for a

more reasonable price.

First, they will search “buy [book name] cheap” in Google. Later, they will click the link

leading to Amazon and observe that the book they want is second-hand, original and

cheap. However, it is unknown whether the book will be shipped safely in a good

condition. In this case, the user may not be satisfied and will search other

websites/applications.

The user may take a look at online second-hand book markets such as ThriftBooks,

BookFinder, etc [6], [7]. Nevertheless, although in these kinds of websites, the books are

cheap, the shipping price is usually high and the sellers/owners are unreachable.

Additionally, the location of the book is unspecified. At this point, the user may either buy

the pirate version or not be able to obtain the original book at all. This is the problem

which leads to black marketing, devaluation of the books and authors.

BookClub is an innovative mobile application which can be downloaded for free from

Google Play Store. The main difference of BookClub from the similar

applications/websites is that in this app, users can exchange the book they desire with a

unique match/suggestion algorithm. The users log in/register to the app and create the

8

lists of the books they can give away and the books they desire to obtain. Then, the user

will get matched with other users. In this situation, by clicking the match screen, they will

see the list of matches and the owners. They can easily contact the user and arrange a

meeting where they will be able to exchange books. This is an advantage for both sides

since the users will be worried about neither the safety of the book nor its condition, due

to being able to reach them by chat. There is no shipment price and no worries about the

reliability of the other. Additionally, the possibility that the user will get the pirate version

of the book is really low.

There are also the cases of not getting the best match, in this case, BookClub’s

innovative suggestion algorithm offers users new books that they may like, by analyzing

their book wishlist and tradelist. The suggestion algorithm tries to find the books to

suggest similar to the user’s wishlist and tradelist. For example, if the user is insterested

in the books of genres detective, there is a high chance that the algorithm will suggest

something similar to this genre. Additionally, the suggestion algorithm analyzes the

user’s tradelist. For instance, if the user gives away fiction genre books, it means that the

user likes this genre if they have bought it once. Thus, the suggestion algorithm will

suggest some books similar to the fiction.

Both match and suggestion algorithm get affected and lead by some factors such as the

distance between user’s, the trader’s rating, the book’s position in the wishlist, etc. In

other words, the user’s each action changes the algorithm and makes it better.

Overall, BookClub is an innovative and accessible mobile app that will create an

opportunity for book lovers to find new books or trade their books with a simpler method.

The aim of the app is to ease book lovers’ lives by creating a convenience for them to

swap their original books or get them for a cheaper price. With the original and fast

match/suggestion algorithm it will decrease both the black market sales and book piracy.

At the same time, the app will provide the users the books they desire.

9

3. BookClub’s Algorithmic and Application Design

3.1. Server Algorithms and Implementation

3.1.1. Match Algorithm

Giving our users best possible matches for them is one of the main functionalities of

BookClub. In order to achieve this, we implemented our match algorithm by considering

locations and ratings of users.

We decided to search matches for a user in a circular area with radius of 50 kms, by

placing the user that we are searching for matches at the center of this circle. We store

the locations of our users in the “bookclub_server_user” table of our database as

longitude (long) and latitude (lat) values. In our distance related calculations, we used

the information that the distance between 2 latitudes are 111 kms everywhere, whereas

the distance between 2 longitudes vary from latitude to latitude (since all longitudes

merge at the polar points). Since we developed the initial release of our app for use in

Turkey, and since Turkey resides between the northern latitudes of 36° and 42°, we

decided to use the distance between 2 longitudes in our match algorithm as the distance

between 2 longitudes on the northern latitude of 40°, which is 86 kms. Using these

distance metrics, our algorithm obtains the users that are at most 50 kms distant from

our user and we search for matches with these users. The reason for us to implement

this limitation was, we believe that if a user has a match with someone who is more than

50 kms away from him/her, then this match would not be practical, since trading the

books will be hard in this scenario.

Then, in this pool of users, we try to find matches by first checking if these users have

any books to give that our user wants to obtain. We perform this by comparing the books

in our user’s wishlist with the books in other users’ tradelists. In BookClub, a match is a

two-way process, which means that when User A desires a book that User B can give,

then User A must also have a book to give that User B wants to obtain. Therefore, we

10

also compare the books in our user’s tradelist to books in other users’ wishlists. After

this, we obtain our matches.

The next task that our algorithm performs is to calculate scores for these matches. We

calculate scores in a scale of 0 to 100 (as integer). 50% of our match score is based on

the location point of the matched user and 50% of the match score is based on the user

rating point of the matched user. Our algorithm finds the location point by subtracting the

distance between the 2 users from 50. It determines the user rating point by calculating

the average of rating values for the matched user (these rating values are out of 5) and

multiplying it with 10. By default, our algorithm takes the rating of a user who is not rated

yet as 2.5. Then, we add the location point and the user rating point to each other and

obtain the match score.

3.1.2. Suggestion Algorithm

The aim of our suggestion algorithm is to generate the best suggestions for a user by

using the books in his/her wishlist. By this way, users get the chance to receive possible

trades that are suggested by BookClub to them by considering many factors.

Similar with our match algorithm, our suggestion algorithm obtains the users that are in a

circular area with radius of 50 kms from our user. Then, it calculates the ratings for these

users and find the top 3 users with highest ratings among them. We decided to create

recommendations only from the 3 users with the highest ratings, because otherwise we

observed that the number of recommendations generated was quite large, which was

unnecessary.

Then, by comparing the books in our user’s wishlist with the books in other users’

tradelists, we obtain our first suggestion scores. There are 4 criteria that our algorithm

uses to calculate suggestion points; which are user locations, user ratings, attribute

similarity between books and common books that exist in different users’ wishlists. Our

suggestion scores are in the range of 0 to 100. The suggestion score is calculated in the

following way:

11

Point Percentage in Suggestion Score

Book Attributes Similarity Point 30%

User Rating Point 25%

User Location Point 25%

Wishlist Similarity Point 20%

In determining the similarity of attributes between books, we compare the authors and

publishers of 2 books. These were the only attributes in our dataset which can be used

to compare the similarity between 2 books. Book attributes similarity point is initially

calculated out of 50. If the author of 2 books are the same, then the similarity point is 30;

if the publisher of the books are the same, the similarity point is 20. If both the authors

and the publishers of the 2 books are identical, then the similarity point is 50, which is the

maximum value. We convert the book attributes similarity point to a value out of 30 after

these calculations.

Wishlist similarity point reflects the tendency of other users who want the same book in

their wishlist with our user to also want the book which is suggested by BookClub. If

many other users who want Book A also wants Book B, then it may point out that these 2

books can be related with each other. Wishlist similarity point is calculated out of 10 in

the following way:

● If number of wishlists that contain both Book A and Book B is greater than or

equal to 4, then the wishlist similarity point is 10.

● If number of wishlists that contain both Book A and Book B is equal to 3, then the

wishlist similarity point is 7.

● If number of wishlists that contain both Book A and Book B is equal to 2, then the

wishlist similarity point is 4.

● If number of wishlists that contain both Book A and Book B is equal to 1, then the

wishlist similarity point is 1.

12

● If number of wishlists that contain both Book A and Book B is equal to 0, then the

wishlist similarity point is 0.

We convert the wishlist similarity point to a value out of 20 after these calculations.

The user rating point and the user location point are calculated in the same way as in our

match algorithm. We convert both the user rating point and the user location point to

values out of 25. Then, we add these 4 types of points up and obtain our first suggestion

score. If this score is greater than or equal to 50, then this suggestion is saved for future

consideration. Otherwise, we do not take this possible trade as a suggestion, since its

score is too low. We perform this operation between every book in our user’s wishlist and

every book in other 3 users’ tradelists.

After this process is over and all of the first suggestion scores are calculated, our

algorithm then performs all of these operations again, in order to determine the second

suggestion scores. The second suggestion scores compare the books that are in our

user’s tradelist and the books which are other users’ wishlists. The reason for this is that,

all trades in BookClub are 2-way processes, therefore when a user receives a book,

he/she should also give a book in return. Then, we eliminate the possible trades which

has second suggestion score below 50, and save the possible trades which have second

suggestion score greater than or equal to 50 for future consideration.

Then, by comparing the first and second suggestion scores and finding the possible

trades with common users, the algorithm generates suggestions. The final suggestion

scores are calculated by taking the average of the first and second suggestion scores for

a particular trade. We decided to hold the maximum number of generated suggestions

as 5 for a single execution of the algorithm, because if we did not give a limit for the

number of suggestions, then the algorithm was creating too many suggestions, which is

an unnecessary and impractical situation.

3.2. User Experience and Interface Design

The user interface was designed according to several rules that were defined by our

team. For instance, every card design in the application have exactly the same corner

13

radia and same elevation values. These are achieved by defining style values which are

used in several different usage points. On the other hand, the user interface design of

BookClub does not include complex algorithms, mostly, the algorithms are run on the

server side of the application, sent via the API, and the resulting data are adapted to the

screen using custom adapters and different asynchronous tasks that are run on the

background. In this context, it is necessary to point out the fact that the synchronization

of the UI thread and the worker thread is mainly done inside AsyncTask class. The task

separates the UI thread and the worker thread, but it is the coder that synchronizes

these kinds of threads.

4. Final System Architecture Design

4.1. Subsystem Overview

Following page contains the package diagram of BookClub.

14

15

The system architecture of BookClub can be described as a Client / Server architecture.

We chose to implement our platform using this architecture because we want BookClub

to be able to deal with a large number of users without any deteriorations in

performance. Thanks to our server, BookClub will be able to serve many users (clients)

in a fast and successful way. We use the server for many purposes. We store data about

books, users and user book lists in the server. This will give us a significant opportunity

to keep data safe. Also, the user match algorithm will be executed in the server side to

generate matches and suggestions for users. Moreover, the server side will be

responsible for performing most of the computations. The Android app, which will be the

client side, will perform basic operations. It will connect to the server, request relevant

information from the server and display it to the user. Then, the users will be able to

make their own choices, such as accepting or rejecting a match, etc. The data in the

server side will be updated according to the choice being made on the client side. With

this architectural structure, BookClub will be able to work in a fast and efficient way and

continue to perform its function without any deteriorations, even if the number of users

increases significantly.

In BookClub, we also use Model-View-Controller (MVC) design pattern. We distributed

parts of MVC between client and server sides. Client-side contains View, which contains

classes about user interface and user interaction.

Server-side contains Model (user and book data that is stored in a database) and

Controller (which acts as a bridge between Model and View by coordinating and

manipulating the user input in the application).

The users of BookClub will interact with the View part of the Client and this will be the

only part of the application that the users will be able to directly interact with. The users’

input will be taken through the view part. They will be sent to the server including the

data and the user’s request via ConnectionManager class in the Client.

16

4.2. Packages

4.2.1. Client Package

Figure: Package Diagram of Client-Side

17

4.2.1.1 View

4.2.1.1.1 Layout

WelcomeActivity: This class is the first screen that is shown to the user when the

application is first launched. The user can then proceed to login or sign up to the system.

LoginActivity: This class is the representation of the screen where the user can enter

their credentials and go into the system.

ForgotPasswordActivity: When the user forgets their password, they can use this

screen to request a new password email from the system.

GuestActivity: This screen holds 2 pages for the guest user to sign up to the system,

and 1 page for them to see the listed books.

SignUpActivity: This screen is for the new users to create an account by giving

personal information.

MainActivity: This screen holds the suggestion list, match list and the listed books. For

simplicity, these pages are designed to be horizontally scrollable.

ChatListActivity: This screen shows the ongoing and past chats of the user from where

they can proceed to continue or start a chat.

ChatActivity: The user and a matched user can chat from this screen thanks to a quite

familiar and simple massaging layout.

MatchListFragment: This segment shows the matches that the user is involved with.

SuggestionListFragment: This segment shows the suggested listed books to the user.

From here, the user can agree or disagree with a suggestion.

PreferencesActivity: This screen is a navigation list from where the user can proceed to

change several kinds of preferences which can be seen in the following sections.

HistoryActivity: This screen shows a list of transactions that the user has made

recently.

18

ChatSettingsActivity: Here, the user can block or unblock a user with whom they have

chatted recently.

TradeListActivity: The user can add and remove books that they are willing to use as a

trade material in this section.

AccountSettingsActivity: In this section, the user can change personal and account

related information.

WishlistActivity: The user sees and manipulates their wished books in this screen.

GeneralListFragment: This section shows the currently listed books in the system

regardless of the user’s preferences and likings.

BookInfoActivity: This screen shows information and a brief description of a particular

book.

4.2.1.2 Controller

BookClubAPI: This class is meant to help the view package. It sends requests to the

server and receives responses from the server via RESTful API over HTTP and keeps

the session credentials statically. Its methods can give feedback if the process is done or

return the data got from the server in a proper format on the client-side. Requests are

recieved as JSON strings and parsed into the format that the view classes utilize.

4.2.1.3 Model

User: This class is an object to hold the user’s personal info and account related data.

Book: This class is an object to hold a particular book’s information.

19

4.2.2 Server Package

Figure 2: Package Diagram of the Server

The responsibility of the server side of the system is to handle different clients, get

requests from them, keep data of BookClub users and the application, and manipulate

those data by using different components in the server. Server package will be

implemented in Python Django on a different machine (a server) to execute the whole

package and keep the data of the application.

The server-side of the system is mainly grouped into two sections as model and

controller packages. Controller package itself is divided into three main packages such

20

as AlgorithmManager, ServiceManager and ModelManager. Model package includes the

classes dealing with the database in it. These packages are deeply analyzed in this

section.

4.2.2.1 Model

Model part of the server is responsible for migrating the database to the application as a

class. This way, the controllers will easily modify them within the server. These classes

are User, UserRating, Book, Chat, Message, History, WishList, AccountSettings,

TradeList, Match and Suggestion classes. These classes do not do anything except

being a class of a particular table. In other words, these classes will basically be the

attributes of a table (columns) in the server.

4.2.2.2 Controller

Controller part of the server is responsible for coordinating the user input between Model

and View parts of the application.

4.2.2.2.1 ServiceManager

This package is a small-service package that includes in itself the classes that handle

small services within the server-side. These classes are EmailServiceController and

ChatServiceController.

EmailServiceController: This class handles the email service. In other words, when the

application needs to notify a user with email (in signup or forgot password cases), this

class configures the relevant SMTP ports and sends an email to the user effortlessly.

ChatServiceController: This class handles a chat between two users after the match is

confirmed from both sides.

4.2.2.2.2 AlgorithmManager

This package is responsible for managing the execution of the core algorithm of

BookClub. It performs this task by updating match lists and suggestion lists of users

according to the results of the algorithm. It contains classes MatchListController and

SuggestionListController.

21

MatchListController: This class is responsible for finding new matches for a user and

updating the MatchList of a user accordingly. It does this by running the special match

algorithm of BookClub.

SuggestionListController: This class is responsible for creating book suggestions for a

user and updating the SuggestionList of a user accordingly. Book suggestions creating

with a special recommendation algorithm.

4.2.2.2.3 ModelManager

This package is basically a controller package for all the classes of the model package. It

has several controllers that handle the API requests of the particular model classes.

Since all of them do the same thing, their main goal will be generally explained in this

section. These controllers handle main three types of requests (some of the controllers

have exceptions, the details are given in the further sections). These requests are POST,

GET and DELETE.

1. When the request is POST, the controller (for example) signs a user up or adds a

new item to the database. Thus, POST request is basically for adding or updating

the items in the database.

2. When the request is DELETE, the controller deletes an item from the database.

For example, when the user wants to delete a book from the wishlist/tradelist or

wants to delete a particular conversation from the chat list, this request is used.

3. When the request is GET, the controller returns a data with the information from

the database. It is almost the most used request in the application. For example,

when the user wants to see a book’s information the GET request is sent to the

controller and the information of the book is returned as the JSON data.

4.3 Class Interfaces

4.3.1 Client

Please note that the class interfaces do not include getter and setter methods since they

all will be implemented by default for each class. Also as each object will have a default

22

constructor, for the sake of simplicity across the report layout, these constructors will not

be included inside the class interfaces. However, constructors with different than default

parameters will be included.

Figure : Class diagram of Client-Side

23

4.3.1.1 View

4.3.1.1.1 Layout Package

Please note that each activity has an onCreate() method by default and neither of the

activities mentioned in the following section will contain an explanation regarding this

method. The arguments of the onCreate() methods will not be changed. Also, the

functionalities of the screen items (views) will be given inside the onCreate() methods

using anonymous inner classes.

4.3.1.1.1.1 WelcomeActivity Class

Class: WelcomeActivity

This activity is the Java code of the welcome screen, working along with the XML file

welcome_activity.xml. This activity is the Android manifest’s main activity.

Attributes:

private Button loginButton : object of the button which brings login screen.

private Button signUpButton : the object of the button which brings the signup page.

Functions:

private boolean isRemembered() : gathers the user credentials from the device and

automatically authenticates if it finds valid credentials.

4.3.1.1.1.2 LoginActivity Class

Class: LoginActivity

This activity is the Java code of the login screen, working along with the XML file

login_activity.xml.

Attributes:

24

private EditText userNameText : takes the username as input

private EditText passwordText : takes password as input while showing dots only for

the characters.

private Button loginButton : starts the authentication process.

private Button backButton : takes the screen back to welcome screen.

private Button forgotPasswordButton : brings the forgot password screen.

4.3.1.1.1.3 ForgotPasswordActivity Class

Class: ForgotPasswordActivity

This activity is the Java code of the forgot password screen, working along with the

XML file forgot_password_activity.xml.

Attributes:

private EditText emailTextArea : takes input for the email address that the system

will send a new password request mail.

private Button sendButton : starts the password change procedure.

4.3.1.1.1.4 TradeBookActivity Class

Class: TradeBookActivity

This activity is the Java code of the trade book insertion screen, working along with the

XML file trade_book_activity.xml.

Attributes:

private SearchView requestBookName: takes input for the search query.

private ListView listview: shows the list of search results

25

4.3.1.1.1.5 SignUpActivity Class

Class: SignUpActivity

This activity is the Java code of the signup screen, working along with the XML file

sign_up_activity.xml.

Attributes:

private EditText userNameText : takes input for the username.

private EditText emailText: takes input for the email address.

private EditText passwordText: takes password input.

private EditText confirmPasswordText: takes the confirming password input.

private Button signUpButton: starts the signup procedure.

Functions:

private boolean isPasswordMatched(String pass1, String pass2) : every time the

user types in a character for the confirming password, this method controls if two

password inputs match.

private boolean isUsernameUnique(String userName) : every time the user types

in a character for the username, this function checks if the current username is unique.

private boolean isEmailUnique(String email) : every time the user types in a

character for the email address, this function checks if the current entry is unique.

4.3.1.1.1.6 MainActivity Class

Class: MainActivity

This activity is the Java code of the main screen, working along with the XML file

main_activity.xml. Note that this activity is not the main activity in terms of Android

26

manifest entries.

Attributes:

private ViewPager viewPager : holds the swipable fragments that are general list,

suggestion list and match list.

private FragmentPagerAdapter fragmentAdapter : adapts the fragments into the

ViewPager object.

Functions:

private void activeTab(): changes the currently shown fragment. Called inside the

FragmentPagerAdapter.

4.3.1.1.1.7 ChatListActivity Class

Class: ChatListActivity

This activity is the Java code of the chat list screen, working along with the XML file

chat_list_activity.xml.

Attributes:

private ListView listView : scrollable list that contains the chats of the user.

private ListAdapter listadapter : adapts the data of the list items into the list item

views and gives them particular functionalities.

4.3.1.1.1.8 ChatActivity Class

Class: ChatActivity

This activity is the Java code of the chat screen, working along with the XML file

chat_activity.xml.

27

Attributes:

private ListView listView : scrollable list that holds the messages

private ListAdapter listAdapter: adapts the messages into the list view.

private EditText messageTextInput: takes message input.

private RelativeLayout exchangeLayoutInfo : holds the content of the chat’s subject

such as the books that are being traded.

Functions:

private void send(String text, DateTime time, int sourceUserId, int targetUserId) :

sends the message to the user.

private Message checkNewMessages(int sourceUserId, int targetUserId) :

gathers new messages from the server. It is the main function of a worker thread.

4.3.1.1.1.9 MatchListFragment Class

Class: MatchListFragment

This fragment is the Java code of the match list part of the scrollable view pager,

working along with the XML file match_list_fragment.xml.

Attributes:

private ListView listView : scrollable list that holds the matches.

private ListAdapter listAdapter: adapts the match list items into the list view.

4.3.1.1.1.10 SuggestionListFragment Class

Class: SuggestionListFragment

This fragment is the Java code of the suggestion list part of the scrollable view pager,

working along with the XML file suggestion_list_fragment.xml.

28

Attributes:

private ListView listView : scrollable list that holds the suggestions.

private ListAdapter listAdapter: adapts the suggestion list items into the list view.

4.3.1.1.1.11 PreferencesActivity Class

Class: PreferencesActivity

This activity is the Java code of the preferences screen, working along with the XML

file preferences_activity.xml.

Attributes:

private ListView listView : scrollable list that holds the preference tab items.

private ListAdapter listAdapter: adapts the preference list items into the list view.

private List<String> listContentLabel : contains the list item labels of the

preferences list.

private List<int> listContentImages : contains the integer representations of the

icons of the list images.

Functions:

private void listItemFunctionality(String itemLabel) : uses intent to change screen

based on which item is pressed.

4.3.1.1.1.12 HistoryActivity Class

Class: HistoryActivity

This activity is the Java code of the history screen, working along with the XML file

history_activity.xml.

29

Attributes:

private ListView listView : scrollable list that holds the history.

private ListAdapter listAdapter: adapts the history list items into the list view.

Functions:

private void sortByDate(String mode) : sorts the history list based on their dates

and the parameter mode which can either be “ascending” or “descending”.

private void sortByBookTitle(String mode) : sorts the history list based on their

book titles and the parameter mode which can either be “ascending” or “descending”.

private void sortByUser(String mode) : sorts the history list based on their user

names and the parameter mode which can either be “ascending” or “descending”.

4.3.1.1.1.13 RequestBookActivity Class

Class: RequestBookActivity

This activity is the Java code of the request book screen, working along with the XML

file request_book_activity.xml.

Attributes:

private ListView listView : scrollable list that holds the history.

Functions:

private void sortByDate(String mode) : sorts the history list based on their dates

and the parameter mode which can either be “ascending” or “descending”.

private void sortByBookTitle(String mode) : sorts the history list based on their

book titles and the parameter mode which can either be “ascending” or “descending”.

private void sortByUser(String mode) : sorts the history list based on their user

names and the parameter mode which can either be “ascending” or “descending”.

30

4.3.1.1.1.14 TradeListActivity Class

Class: TradeListActivity

This activity is the Java code of the trade list screen, working along with the XML file

trade_list_activity.xml.

Attributes:

private ListView listView : scrollable list that holds the tradable books.

private ListAdapter listAdapter: adapts the tradable books’ list items into the list

view.

private List<Book> tradeBookList: holds the tradable books.

Functions:

private void listRevalidate(): reconstructs the tradable book list after adding a new

book to the list.

4.3.1.1.1.15 AccountSettingsActivity Class

Class: AccountSettingsActivity

This activity is the Java code of the account settings screen, working along with the

XML file account_settings_activity.xml.

Attributes:

private EditText newNameText: input for the personal name.

private DatePicker newBirthday: date picker to select a new birthday.

private EditText oldPasswordField: input for the current password if the user wants

to change the password.

private EditText newPasswordField: input for the new password if the user wants to

31

change the current password.

private EditText confirmPasswordField: input for the confirmed new password if the

user wants to change the current password.

private EditText newEmail : input for new email address.

private CheckBox enableNotifications: check box to enable/disable the notifications

from the application.

private EditText newPhoneNumber: input for the new phone number.

private Button applyChangesButton: triggers the changes.

Functions:

private void applyChanges(): sends a series of queries to make all the requested

changes.

private boolean checkPasswords(): checks if the passwords match.

4.3.1.1.1.16 WishlistActivity Class

Class: WishlistActivity

This activity is the Java code of the wish list screen, working along with the XML file

wishlist_activity.xml.

Attributes:

private ListView listView: scrollable list that holds the wished books.

private ListAdapter listAdapter: adapts the wished books’ list items into the list view.

Functions:

private void listRevalidate(): reconstructs the tradable book list after adding a new

book or removing a book from the list.

32

4.3.1.1.1.17 GeneralListFragment Class

Class: GeneralListFragment

This fragment is the Java code of the listed books’ list, working along with the XML file

general_list_fragment.xml.

Attributes:

private ListView listView: scrollable list that holds the listed books.

private ListAdapter listAdapter: adapts the listed books’ list items into the list view.

private List<Books> tradeBookList: list of the listed books to hold in memory.

4.3.1.1.1.18 BookInfoActivity Class

Class: BookInfoActivity

This activity is the Java code of the book information screen, working along with the

XML file book_info_activity.xml.

Attributes:

private ImageView bookImage : image of the book.

private TextView bookOwner : text of the owner of the book.

private TextView bookText : description of the book.

private Button transactionButton : starts the indicated transaction when pressed.

4.3.1.2 Controller

4.3.1.2.1 BookClubAPI Class

Following funtions in the BookClubAPI class has always a return attribute in the

ArrayList. At 0 index, the status of the request returns (error or success). At index 1, the

33

message coming from the server returns. Finally at index 2, the result of the function

returns in a specific format whose exlanation can be found in the following table. The

functions with parameters sends POST request. The ones without parameters sends

GET request.

Class: BookClubAPI

This class is used to send a request to the server or receive a result from the server

over RESTful API. Also, it puts the taken JSON results into the required object format

in the client.

Attributes:

private OkHttpClient HTTPClient: stores the data if there is an active connection.

private String cookie: stores the token that is got from the server and used to verify

that the current connection is valid. To achieve it, the user needs to login.

Functions:

private get(String url): String: sends a GET request to the server. If the user is

authenticated, the method recieves and sets the cookie.

private post(String url, String json): String: sends a POST request to the server by

parsing the given string into JSON. If the user is authenticated, the method recieves

and sets the cookie.

public login(String username, String password) : ArrayList<Object>: If login is

successful, sets the session cookie.

public signup(String id, String pw, String mail, String name) : ArrayList<Object>:

Only returns the success state.

public forgotPassword(String username, String email) : ArrayList<Object>:

returns the new password.

public signout() : ArrayList<Object>: signs out from the server and destroys the

34

cookie.

public getSession() : ArrayList<Object>: returns the user id in the session.

public actionOnMatch(int match_id, boolean isConfirmed) : ArrayList<Object>:

sends the match id and a boolean that indicates if the match is confirmed.

public actionOnSuggestion(int suggest_id, boolean isConfirmed) :

ArrayList<Object>: sends the suggestion id and the boolean that indicates if the

suggestion is confirmed.

public seeOtherUserProfile(String username) : ArrayList<Object>: returns the

user object with a given username.

public matchListIndex() : ArrayList<Object>: gets the matchlist of the user logged

in with the book objects.

public suggestionListIndex() : ArrayList<Object>: gets the suggestlistof the user

logged in with the book objects.

public mainMenuIndex() : ArrayList<Object>: gets the main menu book lists with

the book objects.

public searchIndex(String input) : ArrayList<Object>: returns the book objects that

matches with the specified keyword.

public getUserProfile(int user_id) : ArrayList<Object>: returns a user object with

the given user id

public rate(int user_id, int rating, int match_id, int suggestion_id) :

ArrayList<Object>: sends a POST request to rate specified user by giving the rate

points.

public getBook(int book_id) : ArrayList<Object>: returns the book with the given

book id.

public getUserProfileID(int user_id) : ArrayList<Object>: returns a user object with

the given user id.

public confirmTrade(int chat_id, boolean isConfirmed) : ArrayList<Object>:

confirms or rejects the trade by giving the chat id of the trade.

public searchBook(String search_book) : ArrayList<Object>: returns the book

35

objects that matches with the specified keyword.

public wishlist_index() : ArrayList<Object>: gets the book objects in the wishlist of

the user logged in.

public wishlist_add(int bookID) : ArrayList<Object>: adds the book with the given

book id into the wishlist.

public wishlist_delete(int wishlist_id) : ArrayList<Object>: deletes the speficied

row in the wishlist by giving its id.

public wishlist_drag(int wishlist_id, boolean isGoingUp) : ArrayList<Object>:

sends a request to change the order of the book in the wishlist.

public accountSettings_index() : ArrayList<Object>: gets all the options of the

account settings of the user logged in.

public accountSettings_reset() : ArrayList<Object>: resets all the options to the

defaults.

public accountSettings_changeAvailability() : ArrayList<Object>: toggles the

availability option in the account settings.

public accountSettings_changeMessagable() : ArrayList<Object>: toggles the

messagable option of the user logged in.

public accountSettings_lastSeen() : ArrayList<Object>: returns the last seen

information.

public accountSettings_changePicture(String profile_picture) :

ArrayList<Object>: changes the profile picture with the given input.

public accountSettings_changePhoneNumber(String phone_number) :

ArrayList<Object>: changes the phone number with the new one.

public accountSettings_changeMail(String mail) : ArrayList<Object>: changes

the mail address with the new one.

public accountSettings_changeLocation(double latAndLon, String country) :

ArrayList<Object>: changes the user location with the given coordinates.

public accountSettings_onlineState() : ArrayList<Object>: toggles the online state.

public accountSettings_changePassword(String password) : ArrayList<Object>:

36

changes the password with the given password.

public tradelist_index() : ArrayList<Object>: returns the book objects in the trade

list.

public tradelist_delete(int tradelist_id) : ArrayList<Object>: deletes the row of the

tradelist with the given id.

public tradelist_add(int user_id, int givingBook_id) : ArrayList<Object>: adds a

new book with given id into the trade list.

public history_index_suggestion() : ArrayList<Object>: returns the book objects in

the suggestion history.

public history_index_match() : ArrayList<Object>: returns the book objects in the

match history.

public history_clear() : ArrayList<Object>: clears all the history information.

public chat_index() : ArrayList<Object>: returns the list of chats.

public chat_messagelist(int chatID) : ArrayList<Object>: returns all the messages

in the specified chat.

public chat_send(int chatID, String text) : ArrayList<Object>: pushes a text into

the specified chat.

public chat_read(int message_id) : ArrayList<Object>: changes the state of the

given message into read.

public message_index(int message_id) : ArrayList<Object>: returns the message

information.

public algo_match_algo() : ArrayList<Object>: indicates that the user wants the

match algorithm to re-run.

public algo_suggestion_algo() : ArrayList<Object>: indicates that the user wants

the match algorithm to re-run.

37

4.3.1.3 Model

4.3.1.3.1 Book Class

Class: Book

This class is used to store and manipulate the information of a book in the system.

Defining all the variables is not a must

Attributes:

private String title: stores the title of the book

private String author: stores the author of the book

private Date publishmentYear: stores the publish year of the book

private String isbn: stores the isbn of the book

private String publisher: stores the publisher of the book

private int bookid: stores the id number of the book

private String bookPhotoUrl: stores the cover image of the book

4.3.1.3.2 User Class

Class: User

This class is used to store and manipulate the information of a user in the system.

Defining all the variables is not a must.

Attributes:

private int userID: stores the ID number of the user

private String name: stores the name of the user

private String surname: stores the surname of the user

private Date birthday: stores the birthday of the user

private String username: stores the username of the user

38

private String email: stores the email address of the user

private String profilePicture: stores the profile picture of the user

private double latitude: stores the latitude of where the user lives

private double longitude : stores the longitude of where the user lives

private String phoneNumber: stores thephone number of the user.

private String country: stores the country of the user.

39

4.3.2 Server

Figure : Class diagram of Server-Side

40

4.3.2.1 Controller

4.3.2.1.1 AlgorithmManager Package

4.3.2.1.1.1 AlgorithmController Class

Class: AlgorithmController

This class is used to create and update the match and suggestion lists of users.

Functions:

suggestion_algorithm(request): This function creates and updates the suggestion

list of a user by creating new suggestions according to some factors like user’s

previous activity etc. Detailed explanation of the algorithm can be found in Server

Algorithm and Implementation section.

match_algorithm(request): This function creates and updates the match list of a user

by creating new matches according to some factors like user’s previous activity etc.

Detailed explanation of the algorithm can be found in Server Algorithm and

Implementation section.

4.3.2.1.2 ServiceManager Package

4.3.2.1.2.1 EmailServiceController Class

Class: EmailServiceController

This class is used to control and manipulate the email sending functionality of

BookClub. This is necessary to connect with users in specific cases such as when they

forgot their password.

Functions:

forgot_password_email(request): This function gets the user from the session,

sends a forgot password email to the user.

41

signup_email(request): This function gets the user from the session and sends a

signup email to the user.

4.3.2.1.2.2 ChatServiceController Class

Class: ChatServiceController

This class is used to control and manipulate the chat functionality of BookClub.

Functions:

createChatSession (user_id1, user_id2): This function creates a chat session

between the users taken by parameters.

terminateChatSession (user_id1, user_id2): This function terminates a chat session

when a trade is completed.

4.3.2.1.3 ModelManager Package

4.3.2.1.3.1 UserController Class

Class: UserController Class

This class is a User model’s controller class

Functions:

getSession(request): This function gets the user in session

login(request): This function handles the user’s login request

signup(request): This function handles the user’s signup request

forgotPassword(request): This function handles the user’s forgot password request

signout(request): This function handles the user’s sign out request

seeOtherUserProfile(request): This function handles the request created when the

user checks other user’s profile

42

getUserProfile: This function returns the user information with the given id

matchlistIndex(request): This function returns the detailed data of the match list

when the user wants to see it

suggestionlistIndex(request): This function returns the detailed data of the

suggestion list when the user wants to see it

mainMenuIndex(request): This function returns the data of the main menu when the

user refreshes it or clicks on the main menu. In the main menu, we show a list of

random book trades.

searchIndex(request): This function returns the trades that include the book that user

searched

searchBook(request): This function returns the book that includes the data that the

user searched

getBook(request): This function returns the book information with the given id

actionOnMatch(request): This function handles the user’s actions on matches such

as confirming and rejecting

actionOnSuggestion(request): This function handles the user’s actions on

suggestions such as confirming and rejecting

confirmTrade(request): This function handles the user’s actions on trades such as

confirming and rejecting

rateUser(request): This function handles the request created when the user rates

another user after a trade

4.3.2.1.3.2 WishListController Class

Class: WishListController Class

This class is a Wishlist model’s controller class

Functions:

43

index(request): This function returns the detailed data of the wishlist for the user in

session

delete(request): This function is activated when the user deletes a book from the

wishlist

add(request): This function is activated when the user adds a new book to the wishlist

drag(request): This function is activated when the user reorders the wishlist books

4.3.2.1.3.3 HistoryController Class

Class: HistoryController Class

This class is a History model’s controller class

Functions:

indexMatch(request): This function returns the detailed match history for the user in

session

indexSuggestion(request): This function returns the detailed suggestion history for

the user in session

clear(request): This function is activated when the user clears the whole history

4.3.2.1.3.4 TradeListController Class

Class: TradeListController Class

This class is a Tradelist model’s controller class

Functions:

index(request): This function returns the detailed data of the trade list for the user in

session

44

delete(request): This function is activated when the user deletes a trade instance

from the trade list

add(request): This function is activated when the user adds a new trade instance to

the trade list

4.3.2.1.3.5 AccountSettingsController Class

Class: AccountSettingsController Class

This class is a AccountSettings model’s controller class

Functions:

index(request): This function returns the data of the user’s current privacy settings

reset(request): This function is activated when the user resets the privacy settings

changeUserAvailablity(request): This function handles the user’s change the

availability request

changeUserMessagable(request): This function handles the user’s change

messagability state request

changeLastSeenState(request): This function handles the user’s last seen state

request

changeOnlineState(request): This function handles the user’s change online state

request

changeProfilePicture(request): This function handles the user’s change profile

picture request

changePhoneNumber(request): This function handles the user’s change phone

number request

changeLocation(request): This function handles the user’s change location request

changeEmail(request): This function handles the user’s change email request +

changePassword(request): This function handles the user’s change password

45

request

4.3.2.1.3.6 ChatController Class

Class: ChatController Class

This class is a Chat model’s controller class

Functions:

index(request): This function returns the chat list of the user in session

4.3.2.1.3.7 MessageController Class

Class: MessageController Class

This class is a Message model’s controller class

Functions:

index(request): This function returns the message list of the specific chat instance

that user selected to see

4.3.2.2 Model

4.3.2.2.1 User Class

Class: User Class

This class is a model class for the user table from the database

Attributes:

id: This attribute represents the user id column

46

name: This attribute represents the user’s name column

country: This attribute represents the user’s country column

mail: This attribute represents the user’s mail column

phoneNumber: This attribute represents the user’s phone number column

dateOfBirth: This attribute represents the user’s date of birth column

username: This attribute represents the user’s username column

password: This attribute represents the user’s password column

lat: This attribute represents the user’s latitude column. It is needed for the GPS

purposes

long: This attribute represents the user’s longitude column. It is needed for the GPS

purposes

onlineState: This attribute is a boolean attribute and represents the user’s

online/offline state column

profilePicture: This attribute stores the name of the user’s profile photo in the

database

4.3.2.2.2 WishList Class

Class: WishList Class

This class is a model class for the wishlist table from the database

Attributes:

id: This attribute represents the wishlist id column

user_id: This attribute represents the user’s id column inside the wishlist table as a

foreign key

book_id: This attribute represents the book’s id column inside the wishlist table as a

foreign key

47

4.3.2.2.3 History Class

Class: History Class

This class is a model class for the history table from the database

Attributes:

id: This attribute represents the history id column

user_id: This attribute represents the user’s id column inside the history table as a

foreign key

match_id: This attribute represents the match id column inside the history table as a

foreign key. It can be null if it is a history data of a suggestion

suggestion_id: This attribute represents the suggestion match transaction id column

inside the history table as a foreign key. It can be null if it is a history data of a match

dateOfAction: This attribute represents the date of the match

state: This attribute represents the state(confirmed or rejected) of the match or

suggestion

4.3.2.2.4 TradeList Class

Class: TradeList Class

This class is a model class for the tradelist table from the database

Attributes:

id: This attribute represents the wishlist id column

user_id: This attribute represents the user’s id column inside the trade list table as a

foreign key

givingBook_id: This attribute represents the user’s giving book’s id column inside the

trade list table as a foreign key

48

4.3.2.2.5 AccountSettings Class

Class: AccountSettings Class

This class is a model class for the account table from the database

Attributes:

user_id: this attribute represents the user’s id column inside the account table as a

foreign key

userAvailability: this attribute is a boolean attribute that will be turned on or off

depending on the user’s availability case

userMessagable: this attribute is a boolean attribute that will be turned on or off

depending on the user’s chat availability state

lastSeen: this attribute is a boolean attribute that will be turned on or off depending on

the user’s desire to showcase their last seen time or not.

4.3.2.2.6 Chat Class

Class: Chat Class

This class is a model class for the chat table from the database

Attributes:

user_id_1: This attribute represents the first user’s id in the chat table as a foreign key

state_1: This attribute represents the first user’s state (online or offline)

user_id_2: this attribute represents the second user’s id in the chat as a foreign key

state_2: This attribute represents the second user’s state (online or offline)

match_id: This attribute shows the match_id if the chat is opened after the

confirmation of a match

suggestion_id: This attribute shows the suggestion_id if the chat is opened after the

49

confirmation of a suggestion

4.3.2.2.7 Message Class

Class: Message Class

This class is a model class for the message table from the database

Attributes:

id: This attribute represents the sent message’s id in the message table

messageText: This attribute represents the sent message’s text in the message table

messageDate: This attribute represents the sent message’s date in the message

table

isSeen: This attribute is a boolean attribute and it represents the sent message’s

state; seen or not seen

sender_id: This attribute represents the id of the user that sends the message

shat_id: This attribute represent the chat_id that the message belong

4.3.2.2.8 Book Class

Class: Book Class

This class is a model class for the book table from the database

Attributes:

id: This attribute represents the book id column

title: This attribute represents the book’s name column

authorName: This attribute represents the book’s author’s name column

isbn: This attribute represents the book’s isbn column

publisher: This attribute reperenst the book’s publisher

50

publishDate: This attribute represents the book’s publish date column

bookPhoto: This attribute represents the book’s image’s name in the database

4.3.2.2.9 Match Class

Class: Match Class

This class is a model class for the match table from the database

Attributes:

id: This attribute represents the match id column

user_id: This attribute represents the user’s id column

matched_id: This attribute represents the matched user’s id column

match_score: This attribute represents the match score of the match instance

giving_book: This attribute represents giving book’s id column

wanted_book: This attribute represents the wanted book’s id column

state: ‘confirmed’, ‘rejected’, ‘nothing’

matchDate: This attribute represents the date of the match

4.3.2.2.10 Suggestion Class

Class: Suggestion Class

This class is a model class for the suggestion table from the database

Attributes:

id: This attribute represents the suggestion id column

user_id: This attribute represents the user’s id column

suggested_user: This attribute represents the suggested user’s id column

51

recommendation_score: This attribute represents the recomendtation score of the

suggestion instance

giving_book: This attribute represents book_id that user will give

wanted_book: This attribute represents the book_id that is user wishlist

state: ‘confirmed’, ‘rejected’, ‘nothing’

suggested_book_id: This attribute represent the book_id that is suggested to the

user

suggestionDate: This attribute represents the date of the suggestion

5. Impact of Engineering Solutions

5.1. Economical Impacts

BookClub may have economic impacts on Book Sale Marketplaces. BookClub gives its

users an opportunity of trading their books without paying rather than buying new books.

Since it is a much more cost efficient way, many people prefer trading. This may lead to

a decrease in the sales of books. Additionally, the budget that people reserve to buy

books can decrease. For instance, in universities, most of the course books are

expensive, thus, with BookClub students can spend their limited budget to other things.

5.2. Environmental Impacts

If BookClub becomes popular and trading of used books are preferred instead of buying

new books, the book sales can be decreased. Due to this decreasing, publishers may

reduce the number of prints of the new books.

Additionally, BookClub tries to decrease book blackmarketing, which unfortunately

enlarges its sales day by day. BookClub’s popularity could definitely reduce and even

stop the blackmarket in some areas. It would be a huge environmental impact, since the

number of trees cut down for the blackmarketing could decrease drastically.

52

5.3. Social Impacts

● BookClub aims to increase the reading amount of the society by providing them

an easy-to-use channel for reaching out new books.

● BookClub also aims to reduce book piracy and black market sales by presenting a

practical book trading platform. The users of BookClub will be able to obtain a lot

of original books without paying any price and by this way, book piracy and buying

books from black market will become less advantageous for readers.

● BookClub will create a community of book lovers. For the users, it will be possible

to meet new people with similar taste of books.

● In BookClub, the users will be able to rate each other after both parties confirm

that trade was processed. By this way, the user ratings will be accurate values

that demonstrate the satisfaction of the users from trades with a particular user.

This will increase the trustworthiness of the app.

6. Tools and Technologies Used

6.1. Development Tools

6.1.1 Pycharm

PyCharm was used as an editor, mainly by the server team. Since PyCharm had great

tools, debuggers and support plugins for Python 3 and Django Framework, we decided

to use it right away. Additionally, the team was already familiar with PyCharm, because it

has a similar and easy interface as in IntelliJ, which everyone knew from CS 319 -

Object-Oriented Software Engineering course.

6.1.2. Visual Studio Code

Visual Studio Code is another editor that some members of the server team used during

the implementation. The reason why some members used VScode was mainly its

weight. In comparison to PyCharm, VScode is much lighter and simpler. Since some

53

laptops had a difficulty to run PyCharm everytime, the members decided to switch to

VScode. There was no problem in combining codes or merging them, thus we decided to

go on with two editors in the server team.

6.1.3. GitHub

GitHub was the main tool that we used for combining, updating and merging codes. We

used GitHub Desktop for updating the codes from the branches. Each team (server and

client) had their own branches and additionally, each member had their own branch. We

also had a master branch for the final code. This way, we ensured that there was no

problem in merging the code. If someone wanted to change their code they would do it in

their own branch. Later, after the detailed code review and consensus we were updating

the main branches which are server and client.

6.1.4. Postman

Since BookClub is a client-server application, we needed a tool for communicating and

testing our RestAPI. Postman was used as a communication and testing tool. Its simple

UI and support for easily adjusting the requests was very helpful for both client and

server team. [8]

6.1.5. Xampp

Since it is not always easy to find a good external server, we used our local server for

testing our own codes in each laptop. Since all of the members were familiar with Xampp

from CS 353 - Database Systems course, we decided to use this tool. We used Xampp

for running the local server in the laptops. Additionally, we used Xampp for running a

public local server so that we could access the common server. It saved us a lot of time

and it was on budget. [9]

6.1.6. phpMyAdmin

BookClub required a good and easily accessible database that supports MySQL, we

decided to stick to the good old phpMyAdmin, which is normally supported by Xampp.

54

Each member had a database in their local. Before switching to the common database,

phpMyAdmin was very useful for the individual implementation.

6.1.7. HeidiSQL

We began using HeidiSQL after switching to the common database. As it is seen from

the tool’s name, it has the same function as phpMyAdmin. However, HeidiSQL has much

better interface and more options than phpMyAdmin. For example, it was easier to

change the foreign key restrictions in HeidiSQL than in the other one. It also had an

advantage of displaying the local database. [10]

6.1.8. Trello

BookClub is a huge application with a lot of functions both in client and in the server side.

It would be nearly impossible for our team to understand all requirements correctly,

remember all “todo”s and add new tasks in real life. Trello is a very simple and

user-friendly project management tool that we used throughout the whole project. We

had four branches in Trello, which are API, Algorithm, Server and Client. API was a

common branch where the server side was updating the requests and responses for the

client side to use easily. Server and Client branches were being used by each teams for

adding new tasks. Algorithm was used by server team for adding the tasks for the

algorithm of the BookClub only. Overall, Trello was very useful in the BookClub

implementation progress from the very start of the application.

6.1.9. Android Studio

Android Studio 3.0 was used as the development environment of the user interface code.

As Android Studio is a customized version of Netbeans IntelliJ Idea, it has some

excellent helping features, such as code completion, automatic constructor, getter, setter

generation, partial compilation, UI design tools, etc. Also, thanks to the maven it

contains, it is very easy to install and use other libraries and plugins.

55

6.1.10. Genymotion Emulator

Genymotion Emulator is a third party Android virtual machine program which can be

integrated with Android Studio. As Android Studio’s own virtual machine is slow and

unresponsive, Genymotion became a must for the development process of the user

interface. It also has some needed features such as fake GPS location and battery

usage monitoring. [11]

6.2. Libraries and Frameworks Resources

6.2.1 Square Picasso

Picasso is a third party library that eases the process of loading images from URL and

adapting them into the respective container. It, by default, has a very efficient caching

mechanism that stops the program from loading an image from the same URL more than

once. Also, it handles all the operations in asynchronous tasks, therefore, it rarely uses

the UI thread and slows the application down. [12]

6.2.2 Swipe to Dismiss Undo

This third party library eases the operation of swiping items from a list view. It is not very

easy to use this library as it requires many adjustments in the code to get working,

however, it has an elegant approach and it does what it provides to do. [13]

6.2.3 Spots Dialog

This is yet another third party library that provides an elegant AlertDialog component for

the Android ecosystem. It is used in every place where the user is asked to wait until the

network access is done. As ProgressDialog component became deprecated by Android

API 26, the only way of creating a progress dialog was to recreate an AlertDialog

component with its own view holder. Thanks to Spots, it became very easy to create the

wanted dialogs. [14]

56

6.2.4 LovelyDialog

Similar to Spots dialog, LovelyDialog is an AlertDialog, except that is much more

customizable and it supports custom actions. Dialogs are the easiest ways of getting

inputs from users therefore their appearance and responsiveness is very crucial for an

app. Thanks to this library, we can show very good looking dialogs. [15]

6.2.5 Pandas

In server side we use pandas dataframes and its methods to hold, iterate and modify our

data. In our database we have many rows in our tables (users, books, wish lists,

tradelists and etc). In some algorithms such as match and suggestion algorithm we need

to iterate over these tables for several users. Since, pandas dataframe is created to ease

and fasten the modification and iteration in large datasets, it is very useful for our

application. [16]

6.2.6 Factory-boy and Faker

We used these libraries to generate data for our Django Models. Since we need data in

our Database to control and test our program, using this library helped us a lot. With the

help of these libraries we could easily seed the tables in the database. [17]

6.2.7 Django

Django is a very powerful Python Framework that we used to implement the server part

of the BookClub. Django comes with a good folder structures where we can add a new

apps to the application, control the configurations, databases and settings easily. [18]

6.2.8 Django-cors-headers

Django-cors-headers library was added to the server part of the application, after having

conflicts of allocating the headers from the client side. In other words, when the client

side was sending requests to the server, they were getting errors such as ‘the header is

not allocated correctly’ which meant they had to implement the header manually. This

57

would be a waste of time, since the codes were constantly changing, thus

Django-cors-headers came very handy in automatically adjusting the headers for the

client side. [19]

6.2.9 djangorestframework

Djangorestframework is a library for Django Python Framework which creates a plugin to

implement the RestAPI. We used this framework for creating routes with GET, POST

and DELETE gates. [20]

6.2.10 mysqlclient

BookClub has a huge database with MySQL support. Since Django Python Framework

had a sqlite support only, we needed to add mysql plugin in order to adjust it to the

MySQL database. Mysqlclient was installed and configured to the application for creating

this support.

6.2.11 Android SDK 28

As BookClub is an Android application, it was coded in Android SDK. We kept BookClub

as up-to-date as possible therefore we used the newest Android SDK, however it

supports Android devices that support SDK 26 and above. As SDK 28 is the most recent

version, we used the most recent technologies that it provides such as easier

asynchronous task creation.

7. Engineering Solutions and Contemporary Issues

7.1 Internet Related Issues

BookClub requires internet connection to perform its functionalities. If users are

connected to internet, then they will be able to receive matches and suggestions, send

messages in chat, search for books, etc. However, if they are not connected to internet,

then they will not be able to use BookClub’s functionalities. But we think that this will not

58

be a huge problem, since in the world of 2019, it is not that hard to reach internet

connection. Almost every cafe and restaurant offers free Wi-Fi and most people have

cellular network functionality in their mobile phones.

7.2 Issues Related to Huge Market Size

In our modern world, approximately 12 books are released in every hour in Amazon [21].

It means that around 288 new books are released in a day. In order to fulfill its

functionalities successfully, the books dataset of BookClub should always be up to date.

It is a difficult task to achieve, because it means that the books dataset will grow very

large in time. Therefore, in the future versions of BookClub, it will be necessary to find a

way to efficiently add and store the newly released books in the database.

7.3 Language and Communication Issues

The initial market of BookClub will be Turkey. However, we implemented BookClub in

English. The reason is, our aim for BookClub is to make it easily adaptable to every

country in the world. For this purpose, we decided that implementing our platform in

English would be better since it can be considered as a universal language in today’s

world. Moreover, we believe there will be a lot of university students among the users

and there are lots of international students who are studying in Turkey. We decided to

implement BookClub in the light of these factors.

7.4 Data Privacy Issues

In the database of BookClub, we store some personal data of the users such as their

phone numbers, email addresses, locations, dates of birth, etc. These data will not be

shared with any third party people or company. We will keep the data of our users

private and it will not be possible for any other third party people to reach our database.

We also keep record of user actions as the user’s history. These actions of users will

also be kept private, and only the users themselves will be able to see their history.

Users will only be able to see their own wishlists and tradelists. By this way, we aimed to

59

find matches and create suggestions for our users without making their personal data

available to everyone, because otherwise, some users could make pressure to the user

to keep a book for them and reject other matches/suggestions, which would not be a

pleasant experience for the user.

7.5 Security Issues

For BookClub, the security of the user data is very critical. In order to make sure that

user accounts are secure, we hash the user passwords using md5() function with salting,

then store the hashed passwords in our database during signup. md5 is a one-way

(irreversible) hash function which basically maps an input with any size to a string of bits

with a fixed size [22].

Salting is basically concatenating the password the user entered with a predefined string

and hashing the resulting string. md5 with salting increases the security a lot, because a

lot of md5 decrypters have been built and people with bad intentions can reach them

easily. Decrypting passwords which were hashed using salting is much more harder than

decrypting directly hashed passwords [23]. When users enter their password in the login

screen, we hash these strings using salting again and compare the resulting string of bits

with the password which is stored in our database. If they match, then the gates of

BookClub are opened for the user. Otherwise, no luck.

This also prevents the developers and database maintainers to see user passwords,

which is crucial in terms of user information security.

60

8.User Manual

8.1 Initial Main Page

Welcome Screen

When the user first downloads BookClub and enters the application, he/she faces this

screen. From this screen, the user can either login with the credentials (if they are

already registered), login as a guest - without any credentials or register to the

application. Each of these buttons leads to the separate screens.

61

8.2 Login Page for Normal Users

Login Screen

When the user presses the login button in Initial Main Page, they are lead to the Login

Page for Normal Users screen. In this screen, the user enters their username and

password and presses the login button. If the credentials are correct, they are lead to the

General Page. Else, they get the error message which states that the entered credentials

are incorrect.

The user can also press the remember me checkbox in order to automatically enter the

app every time they click on it.

62

Additionally, if the users forget their password they can press the forgot password button,

which will lead them to the Forgot Password Page.

8.3 Forgot Password Page

Forgot Password Screen

In this screen, the user can enter either their username or email address which they

have already registered with. If their credential is correct, BookClub will automatically

send them a password reset email to their mail address which they have registered with.

The user can reset their password from that email. Later, they will enter from the login

screen again.

63

8.4 Login or Register Proposal Page for Guests

Login or Register Proposal Screen

The users who are not registered to the app, but want to see what it is about can enter

the application as guests. The guests are limited with the actions, for example they

cannot have any matches or suggestions and they cannot add any book to their tradelist

or wishlist simply because they do not own those lists. The guest users can only search

for the books. If they want to perform some other actions, the system will automatically

suggest them to either login or register to the application.

64

8.5 Register Page

Register Screen

The user is lead to the Register Page after pressing the sign up button in the Initial Main

Page. Here the user should enter their personal information and click the sign up button.

After successfully signing up, they will be lead to the General Page.

65

8.6 General Page For Users

 General Page Screen for Users

After successfully logging in or signing up, the users are lead to the General Page where

they see all the offered books from other users and can also search for a specific book.

Additionally, this page is the user’s guide, which means they can access everything from

here. The user can press to see their chats, settings, matches and suggestions. Each of

these buttons will lead the users to the separate pages.

66

8.7 General Page for Guests

General Page Screen for Guests

If the user enters as a guest, they encounter the page named General Page Screen for

Guests. Since its a guest user, they are restricted with the actions. Thus, in this screen

the only action the user can do is to search for some books and see the marketplace of

books. If they try to perform some other action, BookClub will redirect them to the login

page.

67

8.8 Matches Page

Matches Screen

If the user presses the matches button, they are lead to Matches Page. Here the user

sees their top best matches in detail. They see which book should be given and which

book will be taken. They also see the user they are matched with. If they press the

middle button on the match, they confirm it. If they swipe the match, they reject it. If the

other user has already confirmed the match, the chat stream will be opened. Additionally,

the user can go to their settings and already existing chats or return to the general page.

The user can also go to the suggestions page.

68

8.9 Suggestions Page

Suggestions Screen

If the user presses the suggestion button, they are lead to Suggestions Page. Here the

user sees their top best suggestions in detail. They see which book should be given and

which book will be taken. They also see the user they are suggested with. If they press

the middle button on the suggestion, they confirm it. If they swipe the suggestion, they

reject it. If the other user has already confirmed the suggestion, the chat stream will be

opened. Additionally, the user can go to their settings and already existing chats or

return to the general page. The user can also go to the matches page.

69

Suggestions and Matches Pages are very similar, however the algorithm behind them is

completely different.

8.10 Settings Page

Settings Screen

If the user presses the settings button in the top of each screen, they are lead to the

Settings Page. In this page the user can control their own settings and lists. They can go

to the account settings, wishlist, tradelist, history or logout from the application. If the

user clicks the picture button, they will be lead to the page where they can view their own

profile information. They can also return to the general page.

70

8.11 Account Settings Page

Account Settings Screen

In Account Settings Page, the user can change/update their name, password, mail

address, birth date, phone number, availability status, messagability status, last seen

status and location.

The user can also return back to the Settings Page.

71

8.12 Wishlist Page

Wishlist Screen

If the user presses the wishlist button in the Settings Page, they will be lead to the

Wishlist Page where they will see their desired books. Here the user can change the

books’ orders by pressing the arrows next to them. The order of the books highly

changes the suggestion and match algorithm for the users. For example, if the user

wants the “Harry Potter” book first, the suggested books will probably be very similar to

this genre.

72

The user can add a new book to wishlist from this screen by clicking the “wish new book”

button.

8.13 Tradelist Page

Tradelist Screen

If the user presses the tradelist button in the Settings Page, they will be lead to the

Tradelist Page where they will see their giving books.

The user can add a new book to tradelist from this screen by clicking the “trade new

book” button.

73

8.14 History Page

User History Screen

If the user presses the history button in the Settings Page, they will be lead to the History

Page. Here the user will see all the acitivity they had in the application, such as their

reject or confirmed matches/suggestions. They can clear the history whenever they

want. By switching the checkboxes, they will either see match activity or suggestion

activity.

74

8.15 Add New Book to Wishlist Page

Wish New Book Screen

If the user presses the “wish new book” button in the Wishlist Page, they are lead to the

“Add New Book to Wishlist” Page. Here the user searches for the book they would like to

get.

The user can also return back to the Settings Page.

75

8.16 Add New Book to Tradelist Page

Trade New Book Screen

If the user presses the “trade new book” button in the Tradelist Page, they are lead to the

“Add New Book to Tradelist” Page. Here the user searches for the book they would like

to give. This way, BookClub ensures that the user enters correct information for the

book. Later if the user is caught trading not original book, the rating for that user drops

and the user may get banned. That’s why BookClub encourages the users to add a book

if and only if it is original.

76

8.17 My Chats Page

My Chats Screen

If the user clicks the chat button on any page, they are lead to My Chats Page where

they can see all chats they are currently having. If a chat does not have a star sign next

to it, it means it is not confirmed yet. If there is a star, it means the user should rate the

other user, however it is not necessary. To rate the other user, the star should be

clicked. By clicking the chat, the user can enter to the messages screen.

If the user clicks the picture of the other user on the chat instance, they will be lead to the

page for viewing the other user’s profile information.

77

8.18 Single Chat’s PagePage

Chat Screen

After clicking the chat instance, the user is lead to the Single Chat’s Page where they

see the messages between them and the user they are currently trading with.

Additionally, there are two buttons on the top of the messages, which are accepting and

rejecting the trade. If the users succesfully traded the books in real life, they need to

accept the trade in order update the algorithm. If the trade did not happen and the users

are not willing to trade they can reject it. If the both users confirm the trade, the star sign

appears and the users proceed to rate each other.

78

8.19 Rating a User Page

Rating a User Screen

After confirming the trade, the user gets a pop up placeholder for rating the other user.

The users can be rated out of five stars. After clicking the check mark, the other user is

being rated.

79

8.20 Other User’s Profile Page

Other User’s Profile Screen

After pressing the picture button on My Chats screen, the user is lead to the page where

they view the other user’s profile. Here the user can view the other trader’s overall rating,

username, name, birth date and country.

80

8.21 Own Profile Page

Own Profile Screen

After pressing the picture button on Settings screen, the user is lead to the page where

they view their own profile information. Here the user can view the information such as

username, name, birthday, country, phone and email.

81

References

[1] P. Todd Fredrich, "REST API Tutorial", Restapitutorial.com, 2019. [Online]. Available:

https://www.restapitutorial.com/. [Accessed: 04- May- 2019].

[2] "The Web framework for perfectionists with deadlines | Django", Djangoproject.com,

2019. [Online]. Available: https://www.djangoproject.com/. [Accessed: 02- May-

2019].

[3] "Postman | API Development Environment", Postman, 2019. [Online]. Available:

https://www.getpostman.com/. [Accessed: 03- May- 2019].

[4] "Download Android Studio and SDK tools", Android Developers, 2019. [Online].

Available: https://developer.android.com/studio. [Accessed: 09- May- 2019].

[5] "OkHttp", Square.github.io, 2019. [Online]. Available: http://square.github.io/okhttp/.

[Accessed: 04- May- 2019].

[6] ”New & Used Books from ThriftBooks | Buy Cheap Books Online”. [Online].

Available: https://www.thriftbooks.com/. [Accessed: 13 Oct, 2018].

[7] “BookFinder.com: New& Used Books, Rare Books, Textbooks, Out of Print Books”.

[Online]. Available: https://www.bookfinder.com/. [Accessed: 13 Oct, 2018].

[8] "API Testing using Postman", Medium, 2019. [Online]. Available:

https://medium.com/aubergine-solutions/api-testing-using-postman-323670c89f6d.

[Accessed: 03- May- 2019].

[9] "How to Install XAMPP and WordPress Locally on PC/Windows", WPMU DEV Blog,

2019. [Online]. Available: https://premium.wpmudev.org/blog/setting-up-xampp/.

[Accessed: 03- May- 2019].

[10] A. Becker, "HeidiSQL - MariaDB, MySQL, MSSQL and PostgreSQL made easy",

Heidisql.com, 2019. [Online]. Available: https://www.heidisql.com/. [Accessed: 09-

May- 2019].

[11] "Genymotion – Fast & Easy Android Emulator", Genymotion – Android Emulator for

app testing, 2019. [Online]. Available: https://www.genymotion.com/. [Accessed: 05-

May- 2019].

82

https://www.thriftbooks.com/
https://www.bookfinder.com/

[12] "Picasso", Square.github.io, 2019. [Online]. Available:

https://square.github.io/picasso/. [Accessed: 04- May- 2019].

[13] "hudomju/android-swipe-to-dismiss-undo", GitHub, 2019. [Online]. Available:

https://github.com/hudomju/android-swipe-to-dismiss-undo. [Accessed: 03- May-

2019].

[14] "d-max/spots-dialog", GitHub, 2019. [Online]. Available:

https://github.com/d-max/spots-dialog. [Accessed: 05- May- 2019].

[15] "yarolegovich/LovelyDialog", GitHub, 2019. [Online]. Available:

https://github.com/yarolegovich/LovelyDialog. [Accessed: 03- May- 2019].

[16] "Python Data Analysis Library — pandas: Python Data Analysis Library",

Pandas.pydata.org, 2019. [Online]. Available: https://pandas.pydata.org/. [Accessed:

05- May- 2019].

[17] "factory_boy — Factory Boy latest documentation", Factoryboy.readthedocs.io,

2019. [Online]. Available: https://factoryboy.readthedocs.io/en/latest/. [Accessed: 03-

May- 2019].

[18] "The Web framework for perfectionists with deadlines | Django", Djangoproject.com,

2019. [Online]. Available: https://www.djangoproject.com/. [Accessed: 05- May-

2019].

[19] "django-cors-headers", PyPI, 2019. [Online]. Available:

https://pypi.org/project/django-cors-headers/. [Accessed: 05- May- 2019].

[20] T. Christie, "Home - Django REST framework", Django-rest-framework.org, 2019.

[Online]. Available: https://www.django-rest-framework.org/. [Accessed: 05- May-

2019].

[21] J. Biggs and J. Biggs, “There Is One New Book On Amazon Every Five Minutes –

TechCrunch,” TechCrunch, 22-Aug-2014. [Online]. Available:

https://techcrunch.com/2014/08/21/there-is-one-new-book-on-amazon-every-five-min

utes/. [Accessed: 09-May-2019].

[22] D. Arias, "Hashing Passwords: One-Way Road to Security", Auth0 - Blog, 2019.

[Online]. Available:

83

https://auth0.com/blog/hashing-passwords-one-way-road-to-security/. [Accessed: 03-

May- 2019].

[23] D. Arias, "Adding Salt to Hashing: A Better Way to Store Passwords", Auth0 - Blog,

2019. [Online]. Available:

https://auth0.com/blog/adding-salt-to-hashing-a-better-way-to-store-passwords/.

[Accessed: 03- May- 2019].

84

